
AD- A274 375
ImhhmhIhIII

* Symbolic Model Checking for
Sequential Circuit Verification

I.R. Bur&h E. M. Clarke D. E. Long
K. L. McUMIlai D. L. DMI

July 15, 1993

DTIC
ELECTES QEC3 01993

School of Computer ScienceA
Carnegie Mellon UniversityA

Pittsburgh, PA 15213

Accepted for publication in IEE 'fanctions on Computer-Aided Design of Inte-
grated Circuits and Systems

This do -u=j-jt r cs been aPproved
for Public relkas= and sale; its
distribution is unuit~.

This remchb vas sponsored in Part by the Defense Advanced Resarch projects Agency (DOD), ARPA
Order No. 4976, and in peut by the U.S. Air Force under Contract F33615-90-C-14U5, ARPA Order No. 7597,
and in Part by the National Scienc Foundation under contract numabers ccR-672263 and umI4A8807,
and in paut by the Semiconductor Research Corporation under Contract 92cW~-294. The fourti author was
supported by an AT&T Bell Laboamtories Ph.D. Scholarship. The 111k aa~Ko was supported at Stanford
University by a CIS Seed Research Grant.

The views and conclusions contained in this document are those of the authors and should not be
interpreted &I repr~eseting the official policies dither expessed or implied, of the NSF, the SRC, or the U.S.
government.

93-31358

I°I

Keywords: Verification, synchronous circuits, asynchronous circuits, CIL model checking, fairness
constraints, binary decision diagrams, partitioned transition relations, modified breadth-first search.

Abstract
The temporal logic model checking algorithm of Clarke, Emerson, and. Sistla [17] is mod-
ilied to represent state graphs using hmM deision diarg ns (BDDs) [7] and parfitoned

wuaition relstions [10, 11]. Because this representation captures some of the regularity
in the state space of circuits with data path logic, we are able to verify circuits with an
extremely large number of states. We demonstrate this new technique on a synchronous
pipelined design with approximately 5 x 101m states. Our model checking algorithm handles
funl CTL with fairne constraints. Consequently, we are able to express a number of impor-
tant liveness and fairness properties, which would otherwise not be expressible in CTL. We
give empirical results on the performance of the.algorithm applied to both synchronous and
asynchronous circuits with data path logic.

NTIS C~A :.

ByS...-- .-- .--

Avauib:i;iy C(Aie.

Dist Sptcia

A-I
=yIC QUALITY 1:13EcCE 3

Contents

1 Introduction 4
1.1 Contributions . 4
1.2 Ralated Work 5

2 Binary Decision Diagrams 7

3 Representing Circuits 8
3.1 Synchronous Circuits 9
3.2 Asynchronous Circuits 10
3.3 Partitioned Transition Relations 11

4 Finding Reachable States 12
4.1 Frontier Set Simpliication. 13
4.2 Iterative Squaring 14
4.3 Invariants 15

5 Computing Relational Products 17
5.1 Basic Algorithm ... 17
5.2 Disjunctive Partitioning 19
5.3 Conjunctive Partitioning 19
5.4 RecombiningPartitions 21

6 Symbolic Model Checking 22
6.1 Computation Tree Logic 22
6.2 Model Checking ... 23
6.3 Fairness Constraints 24

7 Verifying Synchronous Circuits 26
7.1 Pipelined ALU ... 26
7.2 Other Synchronous Examples 33

8 Verifying Asynchronous Circuits 35
8.1 Modified Breadth First Search 35
8.2 An Asynchronous Stack 37
8.3 Distributed Mutual Exclusion 40

9 Discussion 43
9.1 Transition Relations 44
9.2 Degree of Automation 45

1 Introduction

Bugs found late in the design phase of a digital circuit are a major cause of unexpected
delays in realising the circuit in hardware. As a result, interest in formal verification tech-
niques for hardware designs has been growing. A number of different methods have been
proposed, but nearly .1t can be classified in terms of the natural division between the data
pats and the cevto/ing cficuiby in digital circuits. The most successful methods to date
for verifying data path logic treat only functional behavior, without considering sequential
behavior. These methods are frequently based on the use of automatic theorem provers
or proof checkers and may require considerable assistance from the user in constructing a
correctness proof. In contrast, the most effective techniques for reasoning about sequential
behavior usually require a complete exploration of the state space of the circuit (6, 21, 25].
The state exploration techniques are attractive because they are highly automatic: the user
simply provides a description of the circuit implementation and its specification; the system
does the rest. In the case of a single controller, the approach is often quite practical, since
the number of states tends not to be excessive. The approach has not been very useful with
data paths, however, since the number of states is almost always too large to permit explicit
enumeration. In order to reason about the complex interaction between controllers and data
paths we need techniques that are able to handle both types of circuits. Developing such
techniques has proven to be a very difficult problem. However, the regularity of data path
designs provides some reason to believe that their state graphs, while large, will often have a
relatively simple structure. Consequently, it may be possible to find a concise representation
that exploits the uniformity of the state space and depends in sise more on the inherent
complexity of the data path logic than simply the number of states it determines.

In this paper, we show how tempoul logic model checking [12, 13, 14, 16, 171 and reach-
abity analysis algorithms can modified to represent state graphs using binary decision
diagram. (BDDs) [7]. Because this representation captures some of the regularity in the
state space determined by sequential circuits, we are able to verify sequential circuits with
an extremely large number of states. The algorithms are based on computing fixed points
of functions, called predicate transformers, that map sets of states to sets of states. The
predicate transformers are used to describe properties of circuits and are derived from the
transition relations of the circuits. Both state sets and predicate transformers are repre-
sented with BDDs. Thus, we are able to avoid explicitly constructing the state graph of
the circuit. We have tested the performance of the algorithms on both synchronous and
asynchronous circuits with data path logic. We were able to verify a pipelined ALU with
over 10'i states and an asynchronous stack with over 10" states. More importantly, for the
classes of circuits that we verified, the CPU time required increased as a small polynomial
in the number of components of the circuit. These results provide strong evidence of the
scalability of our methods.

1.1 Contributions

The major contributions of this paper are as follows.

1. A BDD-based algorithm for CTL model checking with fairness co,•tuinta.

4

2. A description of d-junctive pwo und transitio rdeki-on and conjunciv partiioned
trasiion relisatin. With these methods, computing the transition relation of a circuit
never limits the sise of the circuits that can be verified.

3. A modified breadh Jis search algorithm to speed up reachability analysis for circuits
represented with disjunctive partitioned transition relations.

4. A thorough empirical study of the asymptotic complexity of our methods using several
substantial examples.

5. General techniques for improving the efficiency of verification methods based on reach-
ability analysis by viewing such verification as automatically constructing and checking
an invariant.

Several of the above contributions are full length descriptions of results the current authors
first described in the conference literature [10, 11, 12, 13, 14].

1.2 Related Work

There are a number of approaches for verifying sequential circuits by state exploration tech-
niques. Not long after Bryant described BDDs [7], several groups began adapting state
exploration algorithms for use with BDDs.

Coudert, Berthet, and Madre developed a method for showing equivalence between two
deterministic finite automata [18]. Given two automata, they perform a breadth first search
of the state space of the product automata. BDDs are used to represent sets of states and
the possible transitions of the automata. For the latter, a trianiuion function vector is used.
This is a vector of BDDs, one for each state bit, that represents the next state logic of the
circuit. Cho et aL (15] discuss a similar technique.

Several groups have independently applied BDDs to CTL model checking [16, 17]. Burch,
Clarke, McMillan and Dill [12] have developed a symbolic CTL model checker that uses
transition relations to represent the circuit being verified. Coudert et aL (20] and Bose and
Fisher [3] have described BDD-based algorithms for CTL model checking that use transition
function vectors for this purpose. Since all three of these verification techniques are based
on CTL, they are able to handle specifications that include unbounded liveness properties.
Such specifications cannot be handled by other symbolic techniques for sequential circuit
verification such as those described by Bryant and Seger [9], Bose and Fisher [2], and Coudert
et al. [18]. In addition, the algorithm of Burch et aL permits arbitrary CTL formulas to be
used as fairnes contrairnts [17].

A serious limitation of the approaches that use transition function vectors, as opposed to
transition relations, is that they cannot model nondeterministic systems in a natural way.
When modeling systems for verification, there are two major sources of nondeterminism.
First, nondeterminism can occur because of concurrency in the underlying circuit (as is the
case in most asynchronous circuit models). Second, nondeterminism arises when abstrac-
tion is used to simplify reasoning about some part of the circuit. Because abstraction may
hide part of the state of circuit, a transition may appear nondeterministic even though it

5.

Best
Available

Copy

was originally deterministic. As an example of these two situations, consider the cache co-
herency protocol for the Encore Gigamax that McMiilha has investigated [29, 30, 31]. The
protocol was designed for a shared memory multiprocessor organised as a series of buses
connected by an asynchronous hierarchical routing network. The caches on each bus are
kept consistent using bus snooping, while a complex message passing protocol is used to
ensure consistency between caches on different buses. McMillan modeled the system as an
asynchronous composition of synchronous finite state machines. He also used abstraction
to simplify the verification, which made the model even more nondeterministic. For exam-
ple, McMillan did not precisely model the cache replacement mechanism. When modeling
asynchronous systems or using abstraction, it is often necessary to use fairness constraints
to make accurate models. For example, fairness constraints are required to describe a gate
with an arbitrary but finite delay.

If a single BDD is used to represent a transitilon relation, the size of the BDD can be-
come a bottleneck. This problem can be solved for asynchronous circuits by representing
the transition relation as an implicit disjunction of BDDs [12], a technique we now call
disjunctive partitioned tranuition relations. Adapting this technique to synchronous circuits
requires conjunctive partitioned tranaition relations. Touati et at. 134] and Burch, Clarke
and Long [10, 11] developed methods for computing an image of a conjunctive partitioned
transition relation (the latter method ;s described in section 5). The efficiency of both tech-
niques derives from early quantification of state variables. We believe that our technique
often allows more early quantification, and so is more efficient. The available empirical
results support this conclusion, although more experimentation is necessary before a defini-
tive conclusion can be reached. A detailed comparison of the two methods is presented in
section 9.

Bryant, Seger and Beatty [8, 9] have developed an algorithm based on symbolic simulation
for model checking in a restricted linear time logic. A specification consists of preconditions
and postconditions expressed in the logic. The preconditions are used to restrict inputs and
initial states of the circuit; the postcondition gives the property that the user wishes to
check. Formulas in the logic have the form

p0 A Xph A X 2 A ... A X"ý-p,,- A Xp,,.

Note that the syntax of the formulas is highly restricted compared to most other temporal
logics used for specifying programs and circuits. In particular, the only logical operator that
is allowed is conjunction, and the only temporal operator is next time (X). However, the
logic is still applicable to many of the hardware systems that appear in practice. Bose and
Fisher [2] use similar techniques to verify pipeline circuits with respect to a simpler abstract
model by means of a representation function, in analogy to abstract data type verification.
By limiting the class of formulas that they handle, these techniques can check certain proper-
ties very efficiently. However, these restrictions are also a disadvantage compared to general
model checking algorithms. The number of time units that a formula can "look ahead in
the future" is bounded by the maximum nesting of X operators. There is no analog of the
until operator that can look arbitrarily far into the future. Consequently, the logic is not
really suitable for reasoning about nondeterministic systems. For example, at high levels
of abstraction, computations are often modeled as taking an arbitrary but finite number

of steps. It is not possible to verify that such a system will make progress using only the
X operator.

It is difficult to accurately compare the perfzmaace of all of the symbolic verification
methods. We believe that the best comparison technique is to study how the CPU time
required for verification grows asymptotically with larger and larger instances of a class of
circuits. For all of the example circuits we have tried with our methods, this growth rate is a
small polynomial in the number of components of the circuit. Of the other groups mentioned
above, only Bryant, Beatty and Seger [8] have demonstrated good asymptotic performance
on a nontrivial class of circuits. Berthet, Coudert and Madre [1] did demonstrate verification
times that were sublinear in the number of states in the system, but these times were still
exponential in the number of components.

The remainder of the paper is organised as follows. After reviewing BDDs in section 2,
we show how to use BDDs to represent circuits in section 3. We describe algorithms for
finding reachable states and computing relational products in sections 4 and 5, respectively.
Symbolic algorithms for CTL model checking are described in section 6. Empirical results
are given for synchronous circuits in section 7 and for asynchronous circuits in section 8. We
close with some discussion in section 9.

2 Binary Decision Diagrams

Ordered binary decision diagrams (BDDs) are a canonical form representation for boolean
formulas [7]. They are often substantially more compact than traditional normal forms such
as conjunctive normal form and disjunctive normal form, and they can be manipulated very
efficiently. Hence, they have become widely used for a variety of CAD applications, including
symbolic simulation, verification of combinational logic and, more recently, verification of
sequential circuits. A BDD is similar to a binary decision tree, except that its structure is
a directed acyclic graph rather than a tree, and there is a strict total order placed on the
occurrence of variables as one traverses the graph from root to leaf. Consider, for example,
the BDD of figure 1. It represents the formula (a A b) V (c A d), using the variable ordering
a < b < c < d. Given an assignment of boolean values to the variables a, b, c and d, one can
decide whether the assignment makes the formula true by traversing the graph beginning at
the root and branching at each node based on the value assigned to the variable that labels
the node. For example, the assignment (a +- 1,b +- 0, c +- 1,d +- 1) leads to a leaf node
labeled 1, hence the formula is true for this assignment.

Bryant showed that given a variable ordering, there is a canonical BDD for every for-
mula [7]. The size of the BDD can depend critically on the variable ordering. Bryant gives
algorithms for computing the BDD representations of -,f and f V g given the BDDs for
formulas f and g. These algorithms have complexity linear in the product of the sizes of the
argument BDDs. The only other operations which we require for the algorithms that follow
are quantification over boolean variables and substitution of variable names. Bryant gives
an algorithm for computing the BDD for a restricted formula of the form f 1,=o or fl =-1, i.e.,
f with the variable v set to 0 or 1. The restriction algorithm allows us to compute the BDD
for the formula 3v1AJ, where v is a boolean variable and f is a formula, as f I'8 V fj,=,.
The substitution of a variable w for a variable v in a formula f, denoted f(v *- w). can be

7

0

0 0.

b

0

1'

d
0 1

0 1

Figure 1: A Binary decision diagram

accomplished using quantification:

More efficient algorithms are possible, however, for the case of qumtification over multiple
variables, or multiple renaming. In the latter cue, efficiency depends on the ordering of
variables in the BDDs being the same on both sides of the substitution.

Another way to view BDDs is as a form of deterministic finite automata. An n-argument
boolean function can be identified with the set of strings in {0, 1}" that evaluate to 1.
Since this is a finite language and all finite languages are regular, there is a minimal finite
automaton that accepts this set. This automaton provides a canonical representation for
the original boolean function. Logical operations on boolean functions can be implemented
by set operations on the languages accepted by the finite automata. For example, AND
corresponds to set intersection. Standard constructions from elementary automata theory
can be used to compute these operations on languages. The standard BDD operations can
be viewed as analogs of these constructions.

3 Representing Circuits

We begin by describing how to represent circuits symbolically. This involves representing
sets of circuit states and deriving the transition relation of the circuit. Consider a circuit
with a set V of state holding nodes. For a synchronous circuit, the set V is typically the
outputs of all the registers in the circuit together with the primary inputs. In the case of an
asynchronous circuit, V is usually the set of all nodes. A state of the circuit can be described
by giving values for all the nodes in V. Alternatively, if we create a boolean variable for each
node in V, then a state can be described by a valuation assigning either 0 or I to each variable.
Given a valuation, we can also write a boolean expression which is true for exactly that
valuation. For example, given V = {w., ft,) and the valuation (o 4-- 1,1v 4- 1,1v2 -- 0),

8

we derive the boolean formula vo A v, A -v3. This boolean formula can then be represented
using a BDD. In general, a boolean formula may be true for many different valuations. If we
adopt the convention that a formula represents the set of all valuations that make it true,
then we can describe sets of states by boolean formulas and, hence, by BDDs. In practice,
BDDs are often much more efficient than representing sets of states explicitly. We denote
sets of states with the letter S, and we denote the BDD representing the set S by S(V),
where V is the set of variables that the BDD may depend on.

In addition to representing sets of states of a circuit, we must be able to represent the
transitions that the circuit can make. To do this, we extend the idea used above. Instead of
just representing a set of states using a BDD, we represent a set of ordered pairs of states.
We cannot do this using just a single copy of the state variables, so we create a second set
of variables V'. We think of the variables in V as present sate variables and the variables
in V1 as next state variables. Each variable v in V has a corresponding next state variable
in VI, which we denote by V'. A valuation for the variables in V and V' can be viewed
as designating an ordered pair of states in the circuit, and we can represent sets of these
valuations using BDDs as above. We refer to sets of pairs of states as transition relations. If
N is a transition relation, then we write N(V, V') to denote the BDD that represents it. We
always use an ordering for the BDD variables for which the present and next state variables
are interleaved and every present state variable v is adjacent to its corresponding next state
variable V'.

3.1 Synchronous Circuits

The method for deriving the transition relation of a synchronous circuit can be illustrated
using a small example. The circuit in figure 2 is a modulo 8 counter. Let V = {vo, vi,v 2}
be the set of state variables for this circuit, and let V' = {i•,v',,v'} be another copy of the
state variables. The transitions of the modulo 8 counter are given by

I

V2 = 'Ve Q V1

v,' = (vo A v•) (v2 .

The above equations can be used to define the relations

No(V, V') = (.,' -vo),

N, (V,V') = (i4 *vo Dui),(1
N2 (V, V') = (v, 4* (,o A v1,) (v2),

which describe the constraints each vi must satisfy in a legal transition. These constraints
can be combined by taking their conjunction to form the transition relation

N(V, V') = No(V, V') A N,(V, V') A N2(V, V').

In the general case of a synchronous circuit with n state holding nodes, we let V =

{"o,. .,,,-1. and V' = {i,... ,,_ 1}. Analogous to the modulo 8 counter, for each state
variable vi' there is a function fe such that

=i =(M.

9

Figure 2: Synchronous modulo 8 counter.

These equations are used to define the relations

N,(V, V') = (-i' f,(V)).

Continuing the analogy with the modulo 8 counter, the conjunction of these relations forms
the transition relation

N(VIV') = VI) ^... A VI).

Thus, the transition relation for a synchronous circuit can be expressed as a conjunction of
relations.

Given a BDD for each function i, it is straightforward to compute the BDD that rep--
resents N. We say such a transition relation is monokku because it is represented by
a single BDD. Monolithic transition relations have been used successfully for CTL model
checking [12], but the primary bottle- eck is the size of the BDD for the transition relation.

3.2 Asynchronous Circuits

As with synchronous circuits, the transition relation for an asynchronous circuit can be ex-
pressed as a conjunction of relations. Alternatively, it can be expressed as a disjunction.
To simplify the description of how these forms of transition relation are obtained, we as-
sume that all the components of the circuit have exactly one output, and have no internal
state variables. In this case, it is possible to completely describe each component by a func-
tion fi(V); given values for the present state variables V, the component drives its output
to the value specified by fi(V). For some components, such as C-elements and flip-flops,
the function f(V) may depend on the current value of the output of the component, as
well as the inputs. Extending the method to handle components with multiple outputs is
straightforward.

In speed-independent asynchronous circuits, there can be an arbitrary delay between
when a transition is enabled and when it actually occurs. We can model this by allowing

10

each component to nondeterministically choose whether to transition its output. This results
in a conjunction of n parts, all of the form

Ni,(V, v = (9i *f f(V)) V (,' * vi).

The above model for asynchronous circuits allows wires to transition concurrently. We
can also use an interleaving model, which allows only one wire to transition at a time. First,
we apply the distributive law to the conjunction of the Ni, giving a disjunction of 2" terms.
Each of these terms corresponds to the simultaneous transitioning of some subset of the n
wires in the circuit. Second, we keep only those terms that correspond to exactly one wire
being allowed to transition. This results in a disjunction of the form

N(V, V') = No(V•V') V... V N._,((Vv'),

where
N,(V, V') = (,* • f,(V)) ^A(- *)-

It is possible for an interleaving model of an asynchronous circuit to give a different set
of reachable states than a non-interleaving model. However, this does not occur for the
asynchronous circuits we verified in section 8.

3.3 Partitioned Transition Relations

Monolithic transition relations are not the most efficient way to represent the possible tran-
sitions of a circuit. Recall that the transition relations for synchronous and asynchronous
circuits have the form of conjunctions or disjunctions of a number of pieces Ni(V, V'). Each
of these pieces can typically be represented by a small BDD. In our experience, these BDDs
usually have fewer than 100 nodes, often many fewer; only very rarely do they have more
than 1000 nodes. Instead of forming the conjunction or disjunction of the Ni(V, V'), we can
represent the circuit by a list of these BDDs, which are implicitly conjuncted or disjuncted.
We call such a list a partitioned transition relation [10, 11].

For the conjunctive transition relations described above, the Ni could be of the form

N,(V, V') = (a,c* fi,(V))

for synchronous circuits or

N,(V, Ve) = (,u*i f,(V)) v (vi ov,)

for asynchronous circuits, where f, is a transition function. It can be shown that the size of
the BDD for each Ni is at most a constant factor larger than the BDD for f,. In practice,
the difference in sise is insignificant. Effectively, using partitioned transition relations to
represent a circuit requires no more BDD nodes than using transition functions.

For the disjunctive transition relations described above, the Ni could be of the form

N,(V, V,)= (f,(V)) A * vA,).

11

In this case the BDD for N, is not guaranteed to be only a constant factor larger than the
BDD for I,; it could be a factor of n larger, where n is the number of state variables of the
entire circuit. However, there is an additional technique for efficiently representing relations
of this form. Let

R(VV ') = V,, 0 AM(V).

Use the pair (R(V, V"), i) to represent N,(V) with the interpretation that for all vt E V', if
j = i then vj is constrained by R(V, V'), otherwise , is constrained to be equal to vp. Our
software for manipulating transition relations has been adapted to take advantage of this
representation.

While a partitioned transition relation with one BDD for each state variable is almost
always more efficient than constructing a monolithic transition relation, it may not be the
best choice. As long as the BDDs do not become too large, it is better to combine some
of the Ni(V, V') into one BDD by forming their conjunction or disjunction, as appropriate.
Fewer BDD nodes may be needed in this representation if the Ni that are combined have
similar structure near the root of their BDDs. Combining some of the BDDs in a partitioned
transition can also speed up the algorithms for model checking and reachability analysis (see
section 5).

4 Finding Reachable States

Many of the ideas used in symbolic verification can be explained by considering the problem
of computing reachable state sets, since reachable state computations are at the heart of
model checking, state machine comparison, etc. Let So be a set of states, represented by the
BDD S0(V). We wish to compute a BDD S(V) that represents the states reachable from So
via the transitions in the transition relation N. We first consider the problem of finding
those states S1 reachable in at most one step from S0. This set of states is given by

SI = SoU{a' 3a[s E SoA(8,s') E NI}.

Given the BDDs So(V) and N(V, Vt), we can compute a BDD representing S, by performing
the logical operations corresponding to the above expression:

s,(v') = So(V') v 3 [So(V) A N(V, V')].
10EV

(The existential quantifier notation above indicates the existential quantification of all vari-

ables v in V.) Similarly, those states reachable in at most two steps are represented by

s,(V') = So(V') V 3] [st(V) A N(V, Vt)].
WEV

In general, the states reachable in at most h + 1 steps are represented by

s.+I('W) = So(V') v : [s,(v) A N(V, V')].
.EV

12

Note that each set of states is a superset of the previous one. Since the total number of
states is finite, at some point we must have Sh+j = Sh. No further states are reachable, so
the set of all reachable states is represented by S(V) = S1 (V).

The above computation can be viewed an finding aleat fused point A fixed point of a
function f is some value a such that f(z) = z. If we have an ordering on values, and z is
the smallest fixed point under the order, then z is the least fixed point of f. The reateat
flued point is analogously defined. The functions that we will be interested in are functions
from sets of states to sets of states. We call such a function a predicate tmnaforner. We
will use set containment an the ordering between sets of states. A predicate transformer F
is monotonic if S C S' implies F(S) g F(S'). A basic result of fixed point theory is that
monotonic functions have a well-defined least fixed point and greatest fixed point.

Consider the predicate transformer F defined by

F(S) = So U { 8' 1m[8 E S A (a, a') EN] }.
If we represent the state sets by BDDs, the function F can be viewed as specifying a sequence
of logical operations on BDDs. In particular,

(F(S))(V) = So(V') v 3 [S(V) A N(V, V')]
.EV

Note that (F(S,))(V') = Si+1(V'). Thus, applying F represents one step in the reachability
computation. The sequence of state sets 0, So = F(0), S, = F3(0) = F(F(O)), etc.,
converges to the least fixed point of F under the set containment ordering. This least fixed
point is exactly the set of reachable states. Direct iteration is the method of computing
the BDD S(V') representing this fixed point by repeatedly computing S+ 1(V') from Si(V').
The predicate transformer F also has a greatest fixed point under set inclusion. This fixed
point may also be obtained via direct iteration by starting from the set of all states.

Computing fixed points of predicate transformers similar to F is a fundamental step
in symbolic verification, so it is worthwhile to examine the computational complexity of
this problem. The direct iteration method involves repeatedly computing (F(S,))(V') and
checking the equivalence of S(V') and $1+1(V') in order to determine whether a fixed point
has been reached. The time complexity of checking equivalence is either constant or linear
in the sizes of the BDDs representing the formulas, depending on the BDD implementation.
Most of the computational effort goes into computing (F(S1))(V'). The most expensive step
of this is computing 3[S(V) A N(V, V')].

This is an example of a relational product computation. Although relational products can
be computed using the normal BDD algorithms for restriction and boolean connectives, it
is much more efficient to use a special purpose algorithm. We will discuss this algorithm in
section 5.

4.1 Frontier Set Simplification

In order to perform reachability computations more efficiently, a technique called frontier
set ,implificatica due to Coudert, Berthet, and Madre [18] is often used. Their technique

13

often reduces the sise of the BDD representing the set of states on the "search frontier" (i.e.,
the set of states in S+ 1 but not in S). Consider the set of states S2 described above:

S3 = SOu {A'13&[a E S A (s,') E NJ}.

Suppose that we step forwards from the states on the search frontier S..- So, i.e., we compute:
3s' is E,, (s, - So) A E,,' NJ1}

This yields a supenret of Ss - S1 (it may also include some dtates in S1). If we then add in
all the states in S1, we will obtain S2. Thus, the expression for 5, can be rewritten as:

S, = S, U {,' 13 [a E SIP A (oo') E NJ },
where Ss is the frontier S1 - So. In fact, it is sufficient to choose any St satisfying S, - So C
SL 9 St. Given this freedom, we would like to choose SI so that its BDD representation is
small. Goudert, Berthet, and Madre describe an algorithm for this. Their procedure takes
two BDDs S(V) and C(V) as input: we view these as a state set and a 'care set". It
produces as output a BDD St(V) such that 5(V) A C(V) = $5'(V) A C(V) (that is, S(V)
and S"(V) agree for the states that we care about) and such that the BDD St(V) is usually
smaller than the BDD 5(V). Intuitively, we are simplifying the representation of the set S by
adding or removing states not in C. In the example above, we would apply the simplification
algorithm to St(V) using the complement of So as the "care set".

Using this idea, the algorithm for computing the set of reachable states is modified as
follows. First, let So be equal to So. The set S+ 1 of states reachable in k + I or fewer steps
is given by ss g= s, U {(a' 3(s E S^ A (s,.') E NJ1}
where Sh is the result of simplifying the set Sk relative to the "care set" given by the
complement of Si-,. Notice that using frontier set simplification does not result in a memory
savings; all of the BDDs in the original reachability algorithm are still computed. In fact,
memory usage can increase since the BDDs for the S must be computed. The potential
advantage of frontier set simplification is that smaller BDDs are used in the relational product
computation. In practice, frontier set simplification usually results in an insignificant increase
in memory usage and a significant constant factor decrease in computation time.

4.2 Iterative Squaring

One potential problem with reachability computations is that the number of iterations
needed to find a fixed point may be exponential in the number of components of the sys-
tem. We have studied a method for computing fixed points called iterative squaring that
can drastically reduce the number of iterations needed [12, 13, 14]. The direct iteration
algorithm computes the least fixed point of F by computing F(O), F2(0), Fr(O), etc., until a
fixed point is reached. Iterative squaring depends on noting that the predicate transformer
r, which is given by

P'(S) = So u { s' 1 3s[a E S A ((a,.') E N V 3a" [(.a,') E N A (J,.a') E NJ)]}.

14

is of the -a& form as F; the difference is that N has been replaced by

N U {(,a,') 1 3s [(a,,') E N A (0,as') E NJ}.

The BDD representation of this relation can be computed as
N(V V) v 3 [N(VI N A N(VN',VJ].

We call this operation" quwingN. Let No denote N, and let N,+1 be the square of Ni. The

predicate transformer F(') is equal to

S- so u { a' 1 3 S A (a,o') E N}.

By repeated squaring starting from N, we eventually reach a fixed pant Nb which is the
transitive closure of N. Using NA. to compute F(3)(0) gives the least fixed point of F directly.
The number of steps needed to compute the fixed point with this method is logarithmic in
the number of steps needed with direct iteration (assuming the diameter of the state graph
is not reduced when restricted to reachable states). Note, however, that this approach may
be impractical if the BDDs needed to represent the intermediate computations become too
large. Unfortunately, this appears to be the normal case in practice. In our experience,
iterative squaring has been more efficient than direct iteration only on extremely simple
examples such as counters.

4.3 Invariants

Invariant checking is a standard method for verifying safety properties of systems. In our
context, invariant checking requires defining a set of states W to be an invariant and defining
a set Zo of "bad" states, which are states that the circuit being verified should not enter. It
must then be verified that

1. the initial state (or states) is contained in W,

2. ,ll states reachable from W are contained in W, and

3. W and Z0 are disjoint.

Clearly these conditions are sufficient for showing that none of the states in Zo are reachable.
The exact definition of Zo depends on the correctness criteria for the circuit. For an

asynchronous circuit, Zo might be the set of states in which a hasard can occur. The method
can also be used to check whether two synchronous circuits have equivalent input/output
behavior. In this case Zo is the set of global states (ordered pairs (so,*,) where so and as
are each states of the respective circuits) where the two circuits have different outputs.

In verification methods that use theorem provers, the invariant W is typically represented
by a formula in some appropriate logic. The user must usually expend a lot of effort to
discover the invariant. One of the main advantages of using finite state methods is that
an invariant can be constructed automatically without any user intervention. To be more
specific, let So be the set of initial states of a circuit, then compute the set S of states

15

reachable from So. If W = S, then W clearly satises requirements 1 and 2. Once S is
computed, it is easy to determine whether the third requirement is satisfied. If the third
requirement is not satisfied, then the circuit is incorrect and there does not exist a set of
states W that satisfies all three requirements.

An obvious refinement is to check whether any states in 29 are reachable while S is
being computed, instead of waiting until the computatn is complete. Also, it is possible to
represent Ze as an implicit disjunction of several BDDs, analogous to partitioned transition
relations. This can significantly reduce the number of BDD nodes needed to represent ZO,
and does not complicate checking requirement 3. This representation of 2o is very helpful
when checking for hasards in asynchronous circuits. The set So can also be represented by
an implicit disjunction of BDDs, but this requires computing a different set of reachable
states for each of the BDDs used, and is not helpful for typical sets of initial states.

In some cases, however, computing the states reachable from the initial states is too
inefficient. For example, consider verifying a circuit that contains a n bit counter that is
incremented every cycle. If the counter is set to the same value in all of the initial states,
then computing S will require at least 0(2-) steps. We describe two methods, which do not
involve iterative squaring, for speeding up the computation of an invariant.

The flist method involves computing an invariant from 2o rather than from So. Compute,
by reverse reachability analysis, the set Z of all state from which some state in Z9 can be
reached. Thus, Z is the set of all states that can reach a "bad" state. If W is the complement
of 2, then W satisfies requirements 2 and 3. The circuit is correct if and only if W also
satisfies the first requirement, which is equivalent to So n Z = 0. Thus, the difference
between forward and reverse reachability analysis is that the transition relation is reversed,
mad the roles of So and 2. are swapped. Reverse reachability analysis has been studied
by Filkorn [24], and it can be viewed as a generaliation of a earlier methods for finding
equivalent states in finite state machines [26, 32].

In some cases, an invariant can be computed much more quickly with reverse reachability
analysis than forward, even if both methods compute the same invariant. As an extreme
example, consider using reachability analysis to verify that two identical n bit counters have
the same input/output behavior. The set 2. is the set of states where the two counters
have different outputs. If So is a singleton set, then 2" steps will be required to compute S.
However, Z can be computed very quickly since Z = Zo in this case.

For the second method for speeding up the computation of invariants, notice that auto-
matic computation of invariants and user construction of invariants are just two ends of a
continuum. We will only describe the forward reachability case here, but the idea can also
be applied in reverse using the duality described above. The user must choose a set To of
states such that So g TO; then the set T of states reachable from To is computed. If To is
chosen well, then T can be computed from To more quickly (in fewer iterations) than S can
be computed from So. Usually To C_ S, in which case T = S. However, this need not be
the case. All that is required for the verification to go through is that T n Z. = 0. We use
this idea in the verification of an asynchronous stack circuit (see section 8.2). Rather than
starting the reachability search from the set S9 of initial states (where the stack is empty),
we set To to the set of all possible quiescent states of the stack. This significantly reduces
the number of iterations necessary to reach a fixed point.

16

5 Computing Relational Products

As noted earlier, computing relaslonal products in a fundamental operation ian many symbolic
veWication methods. This section describes the techniques that we use for relational product
computations.

5.1 Basic Algorithm

Consider the following relational product:

S'(V') = A N(V,^V)].

In figure 3, we give a special BDD algorithm ReWmd that performs this computation in one
pass over the BDDs S(V) and N(V, V'). This is important in practice since the relational
product is computed without ever constructing the BDD for

S(V) A N(V, V),

which is often fairly large. The basic idea behind the algorithm is to perform the normal con-
junction, except that every time we would build a node labeled with an element of V, we per-
form a disjunction. The BDD S'(V') is computed with the call ReLrod(S(V), N(V, V'), V).

Like many BDD algorithms, RelProd uses a result cache. In this case, entries in the
cache are of the form (f,g,R, h), where E is a set of variables and f, g and A are BDDs. If
such an entry is in the cache, it means that a previous call to ReProd(f, g, E) returned h as
its result.

The algorithm as presented is independent of assumptions about the BDD variable or-
dering. In our implementation, it has been optimized for the case where the present state
and next state variables are interleaved, with corresponding present and next state variables
adjacent to each other.

The algorithm, while working well in practice (assuming N(V, V') is reasonably sized),
has exponential complexity in the worpi case. Most of the situations where this complexity
is observed are czsis in which the output S'(V') is exponentially larger than the inputs
S(V) and N(V, V'). In such situations, any method of computing Sr(V') must have expo-
nential complexity.

The basic relational product algorithm requires having N(V, V') be a monolithic transi-
tion relation, consisting of a single BDD. We saw in section 3 how to construct this BDD for
synchronous and asynchronous circuits. Unfortunately, for many practical examples, this
BDD is very large. Partitioned transition relations can provide a much more concise repre-
sentation, but they cannot be used with the basic relational product algorithm. In the next
two subsections, we show how to extend the basic algor.hm to compute relational products
for partitioned transition relations.

17

function ReL~vod(f,gq: BDD, E: set of vumi&s&e): BDD

it ff= lM"vgf = lM

else it f true AS = frs
return true

elsO it (f,E, B, h) is in the result cache
return I

else
let a be the top ,muiahle of f
let I be the top wvaiable of g
let x be the topmost of s and I
he := RRd,,•(l.,.igIm,.B)

its e R
A := Or(ho, hi)

/* BDD for ha V hI *L
else

& := If gT~eale(z,Ihiho)

/* BDD for (z A &I) V (-,x A A) ,/
endit
insert (fog, Ri) in the result cache
return h

endit

Figure 3: Relational product algorithm

18

5.2 DIajctive Pa o

For a disjunctive partitioned transition relation, the relational product computed is of the
form

5(V) = 3 [s(v) A (N,(V,V') V ... V N%._,(V,9V))].
EVG

This relational product can be computed without ever constructing the BDD for the full
transition relation by distributing the existential quntifiation over the disjunctions:

Sc(v) - 3[S(v) A N.(VV)Jv ... v 3 [S(v) A

Thus, we are able to reduce the problem of computing S(V') to one of computing a series
of relational products involving relatively small BDDs. Much larger asynchronous circuits
can be verified using this representation than with a monolithic transition relation.

5.3 Conjunctive Partitioning

When using a conjunctive partitioned transition relation, the relational product computed
is of the form

s'(v') = 3 [S(v) A (N.(V, V') A... A N,..(VI, V#))]. (2)
EVG

The main difficulty in computing S'(V') without building the conjunction is that existential
quantification does not distribute over conjunction. The method given below overcomes this
difficulty.

Our technique [10, 11] is based on two observations. First, circuits exhibit locality, so
many of the N.(V, V') will depend on only a small number of the variables in V and V'.
Second, although existential quantification does not distribute over conjunction, subformulas
can be moved out of the scope of existential quantification if they do not depend on any of
the variables being quantified. We will take advantage of these observations by conjuncting
the Ni(V, V') with S(V) one at a time and using "early quantification" to quantify out each
variable v when none of the remaining NI(V, V') depend on v.

Consider the modulo 8 counter described in section 3.1. In this case,

S'(V') = 30• 3 , [S(v) A (No(V, VI A N,(V, V') A N2(V, V'))].

Since conjunction is commutative and associative, we can rewrite this as

S'(V') = 3wo3ai 3v, [((s(V) A N,(V, V')) A Ni(V, V')) A No(V, V')]. (3)

The reasons for computing the conjunctions in this particular order will become dear mo-
mentarily. As mentioned above, subformulas can be moved out of the scope of existential
quantification if they do not depend on any of the variables being quantified. According to
equation 1, N,(V, V') does not depend on vi or '2; thus,

s'(v') = 3. [3,1 3,, [(s(v) A N2(V, V')) A N,(V, V')] A No(V, V')].

19

Since N1(V, V') does not depend on 93, we can apply this trick one more time by writing

S'(V,) = 3ft [3 [3 [(s(v) A ,2(V, V ^)] A N1(V, V')J A N,(V, V')].

We can now compute the relational product in equation 2 by starting with S(V) and at each
step combining the previous result with an NS(V, V') and quantifying out the appropriate
variables. Thus, we have reduced the problem of-computing the full relational product to one
of performing a series of smaller relational product-like steps. Notice that the intermediate
results may depend both on variables in V and variables in V'.

Now we can explain why we chose the ordering of conjuncts given in equation 3. We wish
to order the N.(V, V') so that the variables in V can be quantified out as soon as possible
and the variables in V' we added as slowly as possible. This is desirable since it reduces the
number of variables that the intermediate BDDs depend on and hence can greatly reduce the
sie of these BDDs. In this particular example, the variables in V' are added one at a time,
independent of the ordering of the N,(V, V'). Thus, the optimum ordering for the N,(V, V')
is determined by how quickly the variables in V can be quantified out. For each of the
variables vi in V, consider the number of terms that depend on vi: all 4 terms depend on vo,
while 3 terms depend on 91 , and 2 terms depend on 2 . Thus, v3 is the best candidate for a
variable to quantify out early. This explains why we chose to combine S(V) and N2(V, V'),
the two terms that depend on v2, as the first step in the computation. Similarly, N1 (V, V')
was chosen next because it was the only remaining term that depended on vi.

The above example involved computing the relational product in a forward reachability
search. Computing relational products for backward reachability search is quite similar
to the forward reachability cae described above. However, instead of quantifying out the
present state variables when performing the relational product, we quantify out the next
state variables. This change may affect the optimal ordering of the Ni(V, V') when using
conjunctive partitioning. To illustrate this, we consider the modulo 8 counter again. The
relational product that we want to compute has the form

S'(V) = 3vo' 3,;I4 [sv') A (No(V, V') A N,(V, V') A Nr(V, V'))].

We rewrite this as

S•(V) = 3; Ul 3 [((S(V') A No(V, V')) A N,(V, V1)) A N,(V, V')]. (4)

Since, according to equation 1, N2(V, V') does not depend on v or v•,

S'(V) = ,;2 [3 3 [(s(v') A No(V, V')) A N,(V, V,)] A N, V')]

Since NI(V, V') does not depend on vo, we obtain

S#(V) = U3 [3,• [3(• [(s(v') A No(V, V#)] A N,(V, V')] A N,(V, V')].

In this particular example, the number of new state variables V in the intermediate BDDs
is independent of the ordering of the Ni(V, V'). However, the number of old state Variables
vi depends on the ordering, -and is minimized by the ordering given in equation 4. Note that
this ordering is different from the one in equation 3.

20

The method described above for computing the relational product for the modulo 8
counter can be generlized to an arbitrary conjunctive partitioned transition relation with
a state variables, as follows. The user must choose a permutation p of {0, ... , n - 1). This
permutation determines the order in which the partitions Ni(V, V) are combined. For each i,
let DA be the set of variables in V that Ni(V, V') depends on. Also, let

Di- UD,(, -

Thus, Ei is the set of variables contained in Dp(i) that are not contained in D, (.) for any k
larger than i. The EA are pairwise disjoint and their union is equal to V. The relational
product in equation 2 can be computed as

s, (v, V') = 3 [s(v) A No)(V9 V')]
'EN.

s, (v, V') = 3 [s(V, V') A N,(^)(V, V,)]
VEB&

s'(v') = 3 [s_,(vV') A N,(I)(V, V

The ordering p has a significant impact on how early in the computation state variables can
be quantified out. This affects the size of the BDDs constructed and the efficiency of the
verification procedure. Thus, it is important to choose p carefully, just as with the BDD
variable ordering. In practice, we have found it fairly easy to come up with orderings which
give good results.

5.4 Recombining Partitions

Earlier, we described how a circuit could be represented by a set of transition relations
Ni(V, V'), each depending on exactly one variable in V'. We also pointed out that combining
some of the N, together into one BDD can result in a smaller representation. Combining
parts of a transition relation in this way can also significantly speed up the computation of
relational products.

For example, consider the case of an n bit counter. With the usual variable ordering,
the number of BDD nodes needed to represent the transition relation is linear in n in both
the monolithic and fully partitioned cases. Suppose S(V) represents a singleton state set
of the counter. Computing S'(V') with the fully partitioned representation requires n BDD
operations, each of which has complexity 0(n), for a total complexity of 0(n2). On the
other hand, if we use the monolithic relation, we perform one operation of complexity O(n),
a savings in time of a factor of n. In practice, we can often get a speed up by combining
all of the BDDs for any given register, without significantly increasing the number of BDD
nodes in the transition relation.

The empirical results in sections 7 and 8 also illustrate the benefits of recombining par-
titions. In particular, for the KEY benchmark (section 7.2), recombining gave a factor of

21

25 speed up. The MINMAX eampb sh ae bow minhiaiag can give a major reduction in
the space needed iw the teasitim Motion, as well as a uigm•icant speed up.

6 Symbolic Model Chocking

6.1 Computation T1oe Leae

The logic tha we use to specify circuits is a propositional temporal logic of breaching time,
called CTL or Computation Tree Logic [17]. In this logic each of the usual forward-time
operators of linear temporal logic (G gbiuly or sareun*, F ao setime i, the future, X
aezi time and U wsti) must be directly preceded by a path quantifier. The path quantifier

can either be an A (for all computation paths) or an B (for some computation path). Thus,
some typical CTL operators are AGf, which will hold in a state provided that f holds at
all points (globally) along all possible computation paths starting from that state, and EFf,
which will hold in a state provided that there in a computation path such that f holds at
some point in the future on the path.

For explaining our verification procedure, it is convenient to express the CTL operators
with universal path quantifiers in terms of the operator. with existential path quantifiers,
taking idMantage of the duality between universal and existential quantification. Conse-
quently, in our description of the syntax and semantics of CTL, we specify the existential
path quantifiers directly and treat the universal path quantifiers as syntactic abbreviations.

CTL formulas are constructed from atomic propositions i boolean connectives and
temporal operators. When verifying a circuit, the set of atomic propositions is typically
equal to the set V of state variables of the circuit. If u is an atomic proposition in V, then
the formula v is true of a circuit state if and only if the state variable v is high in that state.
The formal syntax of CTL formulas is given by the following two rules:

1. every atomic proposition v in V is a formula in CTL; and

2. if f and g are CTL formulas, then so are -,f, f V g, EXf, E[fUg] and EGf.

Let So be the set of initial states of a circuit, and let N be a transition relation. We now
define the semantics of CTL for such a system. A path from the state so is an infinite sequence
of states sosls3 ... such that N(si, si+,) holds for every i. The propositional connectives -'
and V have their usual meanings of negation and disjunction. The other propositional
operators can be defined in terms of these. X is the next time operator: EXr will be true
in a state so if and only if there is a path soil... from so such that f is true at al. U is the
until operator: E[fUg] will be true in a state so if and only if there exists a path soil ...
from so such that g holds at some sa and f holds at all sa for which i < j. The operator G
is used to express the inmaiance of some property over time: EGr will be true at a state so
if there is a path soil ... from so such that f holds at each state on the path. If f is true in
state s, we say that a satisfies f and write a .= f. We say that the system satisfies f if s Hf=
for all states a in So. We will identify a CTL formula f with the set { 8 1a I-- f } of states
that make f true. We also use the following syntactic abbreviations for CTL formulas:

9 AX =J --EX-f which means that f holds at all successor states of the current state
(f must hold at every next state).

22

"* Elf S E[,reUf which means that for some path, there exists a state on the path
at which f holds (f is posoak in the future).

"* Arf f -=ZG-'f which mmas that for every path, there exists a state on the path at
which f holds (f is ineable in the future).

"* AGf = -,EF-,f which means that for every path, at every node on the path f holds
(f hods fimmia* along all paths).

"* A[fUJ] = ",E(-,gU-,f A -,g] A -'EG-'g which means that for every path, there exists
an initial prefix of the path such that g holds at the last state of the prefix and f holds
at all other states along the prefix (f holds until g holds, along all paths).

6.2 Model Checking

Model checking is the problem of determining whether a given CTL formula f is true in a
given state transition graph. There is a program called EMC (Extended Model Checker)
that veriies the truth of a formula in a model by using efficient graph-traversal techniques.
If the model is represented as a state transition graph, the complexity of the algorithm is
linear in the size of the graph and in the length of the formula. The algorithm is quite fast
in practice [5, 17]. However, an explosion in the sie of the model may occur when the state
transition graph is extracted from a circuit, particularly if the circuit contains many registers
or other memory elements.

In this section, we present a model checking algorithm for CTL which uses BDDs as its
internal representation, in order to avoid explicitly enumerating the states of the model. We
call this ymhbo/ie model checking. The algorithm is defined by a procedure CHECK that takes
the CTL formula to be checked as its argument. It returns a BDD S(V) that represents
exactly those states of the system that satisfy the formula. Of course, the output of CHECK
depends on the system being checked; this parameter is implicit in the discussion below.
The set S0 of initial states is represented by a BDD S0(V), and the transition relation N
is represented by the BDD N(V, V') as discussed earlier. We assume that N is totas that
is, every state has some successor state. This is true for transition relations of the forms
described in section 3.

We define CHECK inductively over the structure of CTL formulas. If f is an atomic
proposition v, then CHECK(f) is simply the BDD v. The inductive steps for formulas of the
form]Xf , E[fUg], and EGf are given in terms of intermediate procedures:

CHEcK(EXf) = CHEcKEX(CHEcK(J)),
CHEzc(E[fUg]) = CHEcKEU(Cxzcx(f), CHECK(g)),
CHEcx(EGf) = CHEcKEG(CHEcK(f)).

The definitions of these intermediate procedures are given below. Notice that these inter-
mediate procedures take boolean formulas as their arguments, while CHECK takes a CTL
fotmula as its argument. The cases of CTL formulas of the form f V g or -,f are handled
using the standard algorithms for computing boolean connectives with BDDs. Since AXf,
A[fUg] and AGf can all be rewritten using just the above operators, this definition of
CHECK covers all CTL formulas.

23

The formula ZXf is true in a state if and only if there exists a path from that state for
which the second state on the path satislesf. Since we have assumed that the transition
relation is total, this is equivalent to there being a successor of the state which satisies f.
Thus, we define CxzcxEX such that

CNcEX(S(V)) =3 [s(V') A N(V, V')].

Compare the definition of CizcxEX to the relational product in the definition of Sh+1 in
Section 4. They are quite similar except that first case computes the set of states from
which a state in S can be reached, while the second computes the states that can be reached
from a state in SA,. In other words, CNECxEX performs one step of a backward reachability
search instead of a forward reachability search. The techniques described in section 5 for
computing relational products can be used here. (However, as discussed in subsection 5.3,
we may wish to use different partition orderings for the forward and backward reachability
computations when using conjunctive partitioning.)

Recall that the formula E[fUg] means that there is a computation beginning in the
current state in which g is true in some future state a, and f is true in all the states
preceding a. This- means that either g is true in the current state, or f is true in the current
state and there exists a successor state in which E[fUg] is true.. In other words, it is the
least fixed point of the predicate transformer defined by

(F(S))(V) = S,(V) V (s,(v) A C=CKEX(S(V))),

where S. and S are the sets of states satisfying g and f, respectively [16]. The algorithm for
CHzcxEU works by finding the least fixed point of the above predicate transformer. This
fixed point can be computed with either the direct iteration or iterative squaring methods
described earlier.

The formula EGf states that there exists a computation beginning with the current
state in which f is globally (invariantly) true. This means that f is true in the current state,
and EGf is true in some successor state. This condition is the greatest fixed point of the
predicate transformer

(F(S))(V) = S,(V) A CmcxEX(S(V)),

where S, is the set of states satisfying f. CHECKEG computes this fixed point, either by
direct iteration or iterative squaring.

After determining the set S of states that satisfy the formula f, the algorithm checks
whether So is a subset of S (that is, whether -"So(V) V S(V) is the BDD representing true).
If it is, then the system satisfies f.

6.3 Fairnews Constraints

Next, we consider the issue of faimness. In many cases, we are only interested in the correct-
ness along fair computation paths. For example, if we are verifying an asynchronous circuit
with an arbiter, we may wish to consider only those executions in which the arbiter does not

24

ignore one of its request inputs forever. This type of property cannot be expressed directly
in CTL. In order to handle such properties we must modify the semantics of CTL slightly.
A fairnes cotstrsaW can be an arbitrary formula of the logic. A path is said to be fair with
respect to a set of fairness constraints if each constraint holds infmitely often along the path.
The path quantifiers in CTL formulas are then restricted to fair paths. In the remainder of
this section we describe how to modify the algorithm above to handle fairness constraints.
We assume the fairness constraints are given by a set of CTL formulas H = .h.,... , h,}.

We define a new procedure CHECKFAa for checking CTL formulas relative to the fair-
ness constraints in H. We do this by giving definitions for new intermediate procedures
CHEcxFAfIEX, CHEcKFAIREU, and CHECKFAMEG which correspond to the intermedi-
ate procedures used to define CHECK.

Consider the formula EGf given fairness constraints H. The formula means that there
exists a path beginning with the current state in which f holds globally (invariantly) and
each formula in H holds infinitely often. The set of such states S is the largest set with the
following two properties:

1. all of the states in S satisfy f, and

2. for all fairness constraints hi, E H and all states a E S, there is a sequence of states of
length one or greater from a to a state in S satisfying hj. such that all states on the
path satisfy f.

It is easy to show that if these conditions hold, each state in the set is the beginning of an
infinite computational path on which f is always true, and for which every formula in H
holds infinitely often. Thus, CHEcKFAMEG will compute the greatest fixed point of the
predicate transformer given by

(F(S))(V) = S,(V) A A CHECKEX(CHEcxEU(S,(V), S(V) A CHEcK(hk))),
h=1

where S! is the sets of states satisfying f under the fairness constraints H. The fixed point
can be evaluated in the same manner as before. The main difference is that each time
the above expression is evaluated, several nested fixed point computations are done (inside
CHEcKEU).

Checking EXf and E[fUg] under fairness constraints is simpler. The set of all states
which are the start of some fair computation is

fair = CHECKFAM(EGtrue).

The formula EXf is true under fairness constraints in a state a if and only if there is
a successor state a' of a such that a' satisfies f and a' is at the beginning of some fair
computation path. Thus, the formula EXf (under fairness constraints) is equivalent to the
formula EX(f A fair) (without fairness constraints). Therefore, we define

CHEcKFA.REX(Sf (V)) = CHECKEX(SI(V) A fair(V)).

Similarly, the formula E[fUgJ (under fairness constraints) is equivalent to the formula
E[fU(g A fair)] (without fairness constraints). Therefore, we define

CHEcxFAmEU(S,(V), S,(V)) = CHzcxEU(Sj(V), S,(V) A fair(V)).

25

7 Verifying Synchronous Circuits

This section gives empirical results for verifying synchronous circuits using both CTL model
checking and reachability analysis. We begin by applying model checking to a simple pipeline
circuit. Reachability analysis is applied to two standard benchmark circuits, MINMAX and
KEY.

7.1 Pipelined ALU

The pipeline considered in this section performs three-address arithmetic and logical opera-
tions on operands stored in a register file. The circuit is a generalised version of one described
in an earlier conference paper [121. Figure 4 shows a block diagram for the pipeline. The
number of pipe registers can be varied; if a is the number of pipe registers, then executing
an instruction requires a + 2 cycles.

1. During the first cycle of the instruction, operands are read from the register file into
the instruction operand registers.

2. During the second cycle, the result of the operation is computed and stored in the first
pipe register.

3. In cycles three through a + 1, the result is passed between pipe registers.

4. In the last cycle, the result is written back to the register file.

We have included extra pipe registers in this version of pipeline to test how the performance
of the model checker depends on the number of pipe registers. In a real circuit, operations
would typically be performed between some of the pairs of pipe registers, but in our example,
results are just propagated unchanged.

Each instruction specifies the source and destination registers and the operation to per-
form. In addition, the pipeline has a stall input that indicates that the instruction is invalid
and should be ignored. More specifically, the instruction's destination register should not
be affected if the stall input is true. The stall signal might, for example, be used to indicate
an instruction cache miss; the signal would be asserted until an instruction is fetched from
main memory. In order to allow results to be used before they are actually written into the
register file, data can be fed from the ALU output or from one of the pipe registers back to
the ALU operand registers. We experimented with a number of versions of the pipeline with
varying numbers of registers r, register widths w, numbers of pipe stages a, and numbers of
operations o.

The specification of the pipeline is given in CTL. For simplicity of exposition, we fix the
number of general registers r at 2 and the number of pipe registers a at 1, and we assume
that the pipeline does only exclusive-or operations. In the actual verification, we used more
complex circuits with more operations. The specification that we used consists of two parts.
The first specifies that the destination register is updated correctly. This is described by a
set of formulas of the following form:

AG (-stall -+ ((arclop,@ (2opi) * reault2)).

26

ERdpluts Wri port

Dypm circulr

Figure 4: Pipeline circuit block diagram

Here, aw'1pi and miopi are abbreviations for formulas that represent the value of the ith
bit of the two source operands and rewsli is a formula that represents the ith bit of the
result written into the register file. The overall formula states "if the pipeline is not being
stalled, then the ith bit of the result of the current operation should be the exclusive-or of
the ith bits of the two source operands".

In order to express amlopi, SrcAp• and reniti, we need a way of expressing the value
stored in a bit of a register some number of cycles k in the future. Since the only nondeter-
minism in the circuit is input nondeterminism, and since the inputs cannot affect the state
of the register file until 3 cycles the future (assuming a equals 1), this can be done using the
CTL AX operator. That is

,AXAX... AX nigi,
k

which we abbreviate as AXhreg,,, represents the value of bit i of register j in k cycles,
provided k <- 3. We can check the assumption that the inputs do not affect the register file
state before 3 cycles elapse by verifying that EXhng~i and AXkreg,, are equivalent for k
up to 3. The timings given below do not include this check; it increases the times by a factor
of two. Now .,clopi is either AX 3n01 j or AX2 rngj, depending on whether the first source
address is 0 or 1. The AX' accounts for the pipeline latency; in 2 cycles, all the values
currently being computed will have been written back into the register file. Thus, we obtain

•miep = (-mrcl.ddro A AXreg, V (smiladro A

Here, arcladdri is the ith bit of the first source address input. The formula for m2oj is
analogous. The formula for resulti is also similar, except we use the values in the register

27

file in 3 cycles (after the operation is completed), and we select based on &atd , the

destination address register:

resAult = (-'desaddrg A AX'ie.,4) V (deatdd~rs A AX'vegi)-

The other part of the specification describes what happens to the registers not being
written (or to all the registers when the pipeline stalls). In particular, the register should
not be altered by the current operation. For example, for register 1:

AG((all V -'ataddro) *(A 4* AXsrqgj).

Note that a number of common subformulas, such as the formulas AXkregM, appear through-
out the specifcation. In the experiments described below, the set of states satisfying each
of these subformulas was computed only once and then saved.

We performed most of the experiments using a partitioned transition relation to represent
the circuit. From the block diagram, we see that the circuit decomposes naturally into pieces.
We used this decomposition as a starting point for breaking the transition relation into parts.
Some of the parts, such as the register file, were found to require large BDDs to represent;
we broke these into more pieces. We also found that we could combine some of the parts,
such as most of the pipe registers, without increasing the number of BDD nodes required;
we did this to decrease overhead. The final decomposition had the following pieces:

1. control logic;

2. the first pipe register;

3. the other pipe registers;

4. the first ALU operand register;

5. the second ALU operand register; and

6. one piece for each general register.

The ordering above was also the ordering used for processing the transition relation. With
this ordering, the number of variables in intermediate results never exceeded the number of
state variables by more than w, the register width. We found that the sizes of the interme-
diate results with this ordering increased monotonically during each step; thus, breaking the
transition relation into pieces did not result in having to manipulate larger state set BDDs
than would have been necessary with a single monolithic BDD representing the transition
relation. This is an important point; in many applications involving BDDs, it is the number
of nodes in intermediate results (not the final result) that limits the size of the problem that
can be handled.

In the BDD variable ordering that we used, the source address registers are nearest to
the root. The bits of these registers are interleaved. These are followed by variables which
make up the destination address shift chain (this is a chain of shift registers that are used to
hold the destination address for an operation until the result of the operation is written back

28

into the register file). For each stage in the chain, starting with the leftmost (input) stage,
there is a stall bit followed by a destination address register. Next come the two opcode
shift registers, with their bits interleaved. The operand registers, general registers and pipe
registers, interleaved, are at the end of the ordering. All registers are arranged with most
significant bit closest to the root of the BDD, since this results in smaller BDDs for the
operations used.

As mentioned, we experimented with a number of versions of the pipeline with varying
numbers of registers r, register widths w, numbers of pipe stages a, and numbers of oper-
ations o. For each version, we collected information on the sizes of the BDDs needed to
represent the transition relation and state sets, and on the time required to do the verifi-
cation. The following table shows the rate of growth in the sizes of the various pieces of
the transition relation as a function of the parameters. These rates of growth were found
by studying "profiles" of the BDDs (histograms of the number of nodes labeled with each
variable). By considering the circuit's operation and examining how the profiles changed as
the parameters varied, we were able to exactly account for the structure of the BDDs needed
to represent the transition relation.

control logic O(S log r)
pipe registers O(iO)

ALU operand regiuters O(alogr + W(r + 8))
each general register O(W + log r)

The total number of BDD nodes needed to represent the transition relation grows linearly
with each parameter except r, for which it grows at a rate of r log r. The log r factors arise
because an extra addressing bit is needed when r increases from 2' - 1 to 2i. The number
of partitions in the transition relation increased linearly with r, and did not depend on
W, a or o. The number of BDD nodes in each piece of the transition relation was typically
between 10 and 500. No piece ever had more than 1,500 nodes. The way the sizes of the
pipe registers and ALU operand registers vary with o depends on the exact operations. The
ones we used were addition, subtraction, and bitwise logical operations. With this set, the
control logic grew O(Iog o), the pipe registers and ALU operand registers grew O(o), and
the general registers did not vary with o.

To make it clear how the above bounds on BDD sizes are derived, we consider one specific
example: the transition relation for the control logic. The other pieces of the transition
relation for the pipelined ALU were analyzed in a similar way. The control logic consists of
two parts: the opcode shift chain and the destination address register shift chain. Each shift
chain is used to store information about an operation until the time that it is to be used.
The opcode is delayed for one cycle while the ALU operand registers are being loaded, and
hence the opcode shift chain is described by the following transition relation:

A= opcod4,,i * opcode01 .

Here, opcode°,i is the ith bit of the input opcode, and opcode•,j is the (next state value of
the) ith bit of the register used to control the ALU. With the variable ordering described

29

above, this transition relation requires O(log a) BDD nodes to represent. The destination
address register shift chain is used to hold the detination register number until the result of
the operation reaches the end of the pipeline. Then the last register in the chain is used to
control the writeback into the register file. The transition relation that describes the shift
chain is:

A A eat!* 4
'-imo =

In this expression, destei is the ith bit of the destination input. Because of the variable
ordering used, the BDD for this transition relation consists of i + 2 sections, one for each
desti. At the end of each section, the BDD has 0(r) width, since the value of deati must
be "remembered" in order to check that de4 1+1 is correct. In addition, each bit of deksi
is "forgotten" before encountering the corresponding bit of desti+,1 . Hence the width of
the BDD is in fact 0(r) everywhere. The number of variables that this part of the BDD
depends on is bounded by 2(1 + 1) Rog vj (the factor of two accounts for current and next
state variables), and hence, the total BDD size is 0("r log r). The conjunction of the BDDs
for the first and second parts gives a BDD of size 0(sv log1 + log o).

We also studied the BDDs representing the various state sets in the verification and
used profiles to determine their rates of growth. Since most of the time and space for each
verification was used computing and representing the value of the destination register at
the end of the current operation, we concentrated on these. Again, by understanding the
information captured by the BDDs, we were able to determine how the sizes of the BDDs
were affected by with the various parameters. The number of nodes in these particular
state set BDDs grows as 0 (v.(r +) log r + wo2(r + a) + wo(r + s)2) (this growth rate was
obtained using the same type of analysis as that above). The largest BDDs we encountered
had slightly less than 12,500 nodes; typical sizes were about 1,000 nodes.

We performed the tests described above using a CTL model checker written mostly in
the T dialect of LISP [33]. The actual BDD manipulation routines are written in C and are
roughly comparable to the package described by Brace, Rudell and Bryant [4]. The model
checker was run on a SPARCstation 1+. Figure 5 shows how the verification time depends
on the parameters r, iw, a and o. This plot (and the other plots in this paper) uses a log scale
on both axes. On such a plot, the polynomial relationship y = z" appears as a straight line
with slope n. The following table shows the values used for the fixed parameters in these
tests.

? in a 0

varyr 1 1 1
vary w 4 1 1
varya 2 2 1
varyo 2 4 1

The verification time is dominated by the time required to compute the state sets for
the subformulas AX*+2reg,,. There are rtw such formulas. Each computation of this form
involves one call to ReLProd for each piece of the transition relation. The verification times
can be accounted for as follows.

30

1024
I

I

512 -
I

I

256

2I

64,

126

8I

64

32 - ____

0165
//

4 2 4 * 8 6 32 6

32
*., .."

- ,

13_
2 4..16.2 6

Fiue 5:Pielie crutvulcto ie

-e° 31

1. As r increases from 2' + I to 2+' for some i, the number of AX'+2 computations
increases linearly. The number of pieces in the transition relation also increases linearly,
and in each cal to RePod, the size of the result BDD increases linearly. If we make
the assumption that the time to do a BDD operation is linear in the size of the result
BDD, then we would expect these three linear increases to produce cubic growth in
the verification time. The dopes of the best fit lines for r equal to 9 through 16 and
for r equal to 17 through 32 are both 2.5. In the general case where r ranges over
more than a factor of 2, we would expect the time to grow as O(r 3log r), but we do
not have enough data to completely substantiate this conjecture.

2. As w increases, the number of AX+' computations increases linearly and the size
of the BDD resulting from each operation increases linearly. This leads us to expect
quadratic growth in the verification time. The slope of the best fit line for w equal to
17 through 32 is 2.1.

3. As a increases, the number of AX computations needed to evaluate each formula of
the form

increases linearly and the sizes of the BDDs produced within these steps increase
linearly. When computing

AX*+3reg, -- AXAX,+ reg•,,

the BDDs during the last AX operation grow quadratically. Overall we expect quad-
ratic growth in the verification time. The slope of the best fit line for a equal to 33
through 64 is 1.8.

4. How the verification time varies with o depends on the particular operations used.
The number of AX'+' computations does not change. The BDDs for the state sets
grow 0(o2) for the operations mentioned above. We would thus expect quadratic
growth in the verification time. The slope of the best fit line for o equal to 9 through
16 is 1.7.

It is important to note that in all cases, the verification time is growing polynomially in the
number of components of these example circuits. Polynomial verification times were also
documented in earlier work [12, 13, 14]. Other researchers [1] using symbolic techniques
have demonstrated verification times that grow sublinearly in the number of states of the
system, but still exponentially in the number of components.

For comparison, we also ran the verification with a monolithic transition relation. With
8 bit registers, the monolithic transition relation required more than 75,000 BDD nodes to
represent, compared with fewer than 750 nodes using a partitioned transition relation, a
difference of more than two orders of magnitude. In addition, the verification needed nearly
an order of magnitude more time. We also note that combining parts of a transition relation
can result in higher asymptotic complexity. For example, the total number of nodes in the
BDDs that represent the register file in the partitioned transition relation is 0(r log r), while
the BDD for their conjunction has 0(r2 log r) nodes.

32

Partitioned transition relations can also be used to verify larger pipelines than those
above. We verified a 32-bit wide pipeline with 8 general registers, 2 pipe registers, and
one operation. This example had 406 state variables resulting in more than 10' reachable
states, and the verification took I hour and 25 minutes of CPU time on a SPARCstation I+.

7.2 Other Synchronous Examples

This section gives empirical results for computing the set of reachable states of the MINMAX
and KEY benchmarks.

The circuits of the MIDMAX benchmark each consist of three control inputs and a data
path of parameterisable width w. The data path is made up of a u; bit input and three w bit
state registers. The variable ordering we used is quite standard: control at top, data path
variables interleaved and ordered most-significant bit to least-significant bit. We considered
two different partitioning. of the transition relation. The first had one BDD per bit of state,
resulting in 3w BDDs each of sine O(w). With the ordering used, there was essentially no
sharing of nodes between these BDDs, so the total number of nodes was 0(w 2). The second
partitioning recombined the bits of each register (see section 5.4), resulting in 3 BDDs each
still of size O(w). Recombining the partitions reduced the total number of BDD nodes
needed for the transition relation from O(W2) to O(w).

The CPU time needed to compute the reachable states with the two representations
shows a similar pattern (see figure 6). The graph shows CPU times in tenths of seconds on a
Sun 3/60. The asymptotic complexity in the fully partitioned case grows slightly faster than
quadratically, while the complexity with recombining is roughly linear. This compares well
with the CPU time required by Berthet, Coudert and Madre [1], which grew exponentially
with w. We also tried a least-significant bit to most-significant bit ordering. This reduced
the total number of nodes in the transition relation with 3w partitions from O(w2) to O(w),
due to sharing. However, this did not affect the time required to compute the reachable
states.

We also considered the KEY benchmark circuit'. The KEY benchmark circuit has 258
inputs (start, encrypt and key0 through keps,), 228 state variables (counto through Counts,
Co through Cil1 and Do through Dill) and 193 outputs. The transition functions for each
of the counti state variables depend on start, encrypt and counti for i < j. The transition
functions for each of the C, depend on start, encrypt, C,, Di, count* through counts, and
two of the kepi inputs. The same is true of the transition functions for each Dj. Thus, the
transition functions for each of the C, and D1 depend on (have a support of) exactly 10
variables.

Because the size of the support of each transition function is small, the corresponding
BDDs can be easily constructed for just about any variable ordering. Also, the particular
supports for each state variable show that the KEY circuit can be naturally viewed as 113
communicating finite automata: one automata for the counto through counts state variables,
and, for each j from 0 to 111, one automata containing the Cj and Di variables. Each of
these automata depend on the countj variables, so it is natural to put those variables at

'Theneare actually two sequential benchmark circuits called KEY, one with 228 latches [34] and one
with 56 latches [191. We use the one with 2=8 latches.

33

,4096 ,

1024

512

-45

° _I
* I,

128

64

31

16 4 .

U. I

U i

S...3w TR paiiios

2 4 8 16 327 64 128

Fgu 6: VeMcation times for MINMAX circut

34

the top of the variable ordering. Also, the Cj and Dj should be interleaved; we used the
ordering C111, DIII,..., Co, Do in our experiments. With this ordering of the state variables,
the largest state set BDD has 5584 nodes, which is an average of less than 25 BDD nodes
per state variable. This small sie is a result of limited communication between the 113
automata described above.

If full partitioning is used, the time necessary to compute the reachable states does
not depend critically on the ordering of the input variables. However, the ordering can
be important if parts of the transition relation are recombined. We put the encrypt and
art inputs at the top of the ordering, and placed the keyi inputs near the Cj mad Dj that

depended on them. This ordering made it possible to use three partitions: one for the countj
variables, one for the Cj variables and one for the Dj variables. The BDDs for the partitions
had 33, 2464 and 2566 nodes, respectively. The time required to find the reachable states
of the KEY benchmark circuit was 1019 seconds (CPU time on a SPARCstation I+) when
using a fully partitioned transition relation mad 41 seconds for the three partition case, a
speed up of nearly a factor of 25.

8 Verifying Asynchronous Circuits

One aspect of verifying speed-independent asynchronous circuits is checking that the circuit
has no hazard,. A hazard is informally defined as a state in which a gate can transition, and
in which another transition can disable the output transition of the gate. This definition of
hazards covers both static and dynamic hazards. In a real circuit, a hazard may result in
the output of the gate starting to change and then returning to its previous state, with the
result that parts of the circuit may see the transition and others may not. We can check for
hazards in two steps. First, we compute the set of states that the circuit and its environment
can reach from a given set of initial states. Then we check that none of these states results
in a hazard. Finding the reachable states is the most computationally expensive of these
two steps. In practice, checking for hazards is usually done as the reachable states are
computed. This method can be generalized to handle a wide variety of safety properties
of asynchronous circuits [22]. The set of reachable states is computed using the methods
described in section 4.

8.1 Modified Breadth First Search

Recall that asynchronous circuits can be modeled using either conjunctive or disjunctive
partitioned transition relations. These correspond to non-interleaving and interleaving se-
mantics, respectively. There are significant differences in the complexity of doing reachability
analysis using the two models. Consider two uncoupled systems M' and M" with disjoint
sets of state variables V' and VN. Let M be the composition of these two systems, and let
V = V' U V". This is an unrealistic example, but it helps illustrate what happens when com-
puting the reachable states of loosely coupled systems. The BDD S(V) representing the set
of reachable states of M is equal to S'(V') A SM(VM), where S'(V') is the BDD representing
the reachable states of M' and S"(V") is the BDD representing the reachable states of M".
For simplicity, assume that the sets S(V), S'(V') and S"(V*) are independent of whether

35

interleaving or non-interleaving semantics are used. An efficient way to order the BDD vari-
able. of the combined system in this cue is to have all the variables of one component (say
M') precede all of the variables in the other component. Then the number of BDD nodes
in S(V) is equal to the sum of the nodes in S'(V) and S(V#). However, in spite of our
assumption that interleaving and non-interleaving semantics give the same reachable states,
the sises of the BDDs representing the intermediate state sets are potentially different for
the two semantics.

Let S,(V), S•(V') and S'(V*) be the BDDs representing the states reachable in i or
fewer steps by M, MW and M", respectively, using non-interleaving semantics. Similarly,
let TZ(V), Vi(V') and 27'(VM) be the BDDs representing the states reachable in i or fewer
steps by M, MW and M', respectively, using interleaving semantics. In the conjunctive (non-
interleaving) case, S,(V) = Si(V') A S? (V*), so the size of each S,(V) is equal to the sum
of the sises of S(V t) and S"(V*), just as for the set of reachable states. For the disjunctive
case, if a global state is reachable in at most i steps and the local state of M' is reachable
in k steps, then the local state of M' must be reachable in at most i - k steps. Hence,

Tim = V (Tk(V) A
1=0

Thus, interleaving semantit. itroduces an artificial correlation between the local states
of M' and M' in the T,(V). In practice, the Ti(V) are generally much larger than the
S,(V). Because of this effect, standard breadth first reachability analysis with disjunctive
partitioning is less eflfcient than with conjunctive partitioning.

We can make disjunctive partitioning more efficient by using a modified breadth first
search (MBFS) for reachability analysis. To search the reachable states of M, first compute
states reachable by transitions of wires in M'. Then compute the states reachable from that
set by transitioning on wires in M". This is equal to the global reachable state set, since
M' and M" are uncoupled. Separately computing local fixed points for the two parts of the
system in this way removes the artificial correlation described above.

In general, for a circuit C divided into loosely coupled subcircuits Cj, we compute the
reachable states of C by repeatedly computing local fixed points for each Ci until a global
fixed point is reached. This idea can be extended to a hierarchy with any number of levels.
For example, consider a dosed system with 4 subcircuits C0 through C3 (see figure 7). Let
Vi be the set of state variables of C,, and let V be the union of the Vi. Subcircuits C, and Cj,
communicate through the state variables in Vi n Vi. Let O be the set of variables in Vi
that are driven by Ci. The OC are pairwise disjoint and their union is equal to V. We can
construct a hierarchy where the top level splits the circuit into 2 parts: Co together with C1
form one part, C2 and C3 form the other. The second level of the hierarchy further splits
the circuit into the individual C,. In this case modified breadth first search proceeds by
alternately finding all the states reachable via transitions in Oo U O and in 02 U Os until
a fixed point is reached. At each iteration, finding the states reachable via O0 U 01 is done
by alternately finding all the states reachable via transitions in 0o and in 01 until a fixed
pointed is reached.

36

-I . .

\\I I ." \ I *.
C1 1 C3

cell I cell2 celldL . --A - J- ---- - - "dat daa dat '%a..*

Figure 8: Stack circuit block diagreadm

8.2 An Asynchronous Stack

In this subsection, we compare conjunctive and disjunctive partitioned transition relations

k- veifig asynchronous circuits by considering an asynchronous lazy stack due to Mar-

tin [281. To determine the asymptotic performance of the various methods discussed above,
we performed a reachability analysis for stacks with varying depth d and word width w.

This is sufficient to study the asymptotic complexity of verification, even though we did not

check for hazards. Hazard checking increases the verification times by about a factor of two.

Figure 8 shown a block diagram of the stack. It consists of an array of d cells, each

cell consisting of a control part, a data part and a completion tree. The data part of each

cell consists of w storage elements. A completion tree consists of (w - 1) C-elements, each

with 2 inputs. It effectively acts as a w-input C-element and is used to signal when all the

storage elements in a cell have completed the current data transfer. The model that we used

also included an environment for the stack that nondeterministically performs push and pop
operations.

The variable ordering that we used can be understood in relation to fiture 8. We ordered

37

the variables by scanning the figure from top to bottom, and, within each row, by scanning
from right to left. Thus, we had variables for the control part of cell d first, the control
part of cell d - 1 next, etc. After al of the control parts, we had data part 1 for cells
d through 1, together with the completion tree variables derived from those data parts. The
last variables in the order were those for data part To in cell 1 (and the associated completion
tree variables).

We did a detailed study of how verification time varied with w for three different methods:

1. Disjunctive partitioning using modified breadth first search. We combined the tran-
sition relations for the gates making up each individual control part, each of the in-
dividual storage elements, and each completion tree. At the top level, the hierarchy
used for local fixed point computation consisted of the environment and each cell as
a unit. Each cell was broken into the control part, the completion tree and the data
part. The data part was further subdivided into a hierarchy consisting of a balanced
binary tree with [lg(w)1 levels.

2. Conjunctive partitioning using the same partitioning of the transition relation as above.

We used the following ordering p of the parts of transition relation:

(a) the environment at the top of the stack;

(b) the control part and data parts for cell 1, followed by the control and data parts
for cell 2, etc.

(c) the completion tree for cell 1, followed by the completion tree for cell 2, etc. and

(d) the environment at the bottom of the stack.

3. Conjunctive partitioning using the same partitioning as above, but with the control
and data parts within each cell combined into one BDD. The p used above is modified
in the obvious way.

In all cases, we used an initial state set in which each cell could be full or empty and the data
in each cell was arbitrary. Using a more restricted set of initial states, such as having al cells
initially empty, can increase the verification time by as much as a factor of d. Interleaving
semantics (method 1) and non-interleaving semantics (methods 2 and 3) both produced
exactly the same set of reachable states for the stack circuit.

We also experimented with disjunctive partitioning using standard breadth first search.
However, we found that this method was feasible only for small examples. Disjunctive
partitioning with modified breadth first search and conjunctive partitioning were both much
more efficient.

A graph of the search times versus stack width for the three methods is shown in figure 9.
Search times using methods I and 2 grew at about To' 2 and wt", respectively. Method. 3
gave a growth rate of roughly w1"2. Using this method, we were able to find the reachable
states of a 32 bit wide, depth 2 stack in 38 minutes of CPU time on a SPARCstation 1+.
This circuit had 989 boolean state variables and over 10s" reachable states.

The BDDs in the transition relation are all of constant or linear size, except for those
representing the completion trees. For both interleaving and non-interleaving semantics, a

38

512 - 12--40 y

a I

I[V

JII

tit 20% a-

I I I ./

, ,! "i , ,~ I4

i14 -1, - i i--
i ,I , a

Fiur ,.'Sarc times in seod fo iue1:Sacim-,s'in eodo

I I '! !- - .. .

-taiosid, wi 1
-ui,/:I i'.I 39

a/
*1 It "

sS .. : 1s

5, .. 4
.. -lim• - ... lu.

, 2 4 3 1 32 1 2 4 3 16 32

Figure 9: Search times in seconds for Figure 10: Search times in seconds for
stacks of 'various widthu, with dI = 1 stacks of various depths, with uw = 1

39

simple analysis of the BDDs for the completion trees show that for w equal to a power of 2,

the number of nodes f(w) must satisfy the equation (to first order)

f(2w) = 3f (w).

When f is extended to values of w that are not powers of 2, it is still a monotonically
increasing function. As a result, the above equation is sufficient to show that f(w) is O(wg"').
For the values of w we considered in our experiments, a single BDD for each completion tree
requires only a small number of nodes. However, for larger w, it might be necessary to split
the completion trees into more than one BDD.

We also explored how the search time varied with the depth of the stack (see figure 10).
The number of steps needed to compute the reachable states grows quadratically in d. The
states which require the largest number of steps to reach are states in which internal signals
within the stack control are not stable. Thus, we were able to avoid the quadratic search
depth by replacing the control part of each cell by an abstract model having only external
signals. We separately verified (using a variant of Dill's explicit state verifier [22]) that
the abstract model correctly describes the -ternal behavior of the control part. With this
abstraction, the number of steps needed to find a fixed point is linear in d. The search times
grow as d' 4 for disjunctive partitioning and as d2"7 for conjunctive partitioning.

Although this kind of abstraction can greatly improve the efficiency of verifierr that
explicitly enumerate states, it is usually not nearly as helpful when used with symbolic
verifiers. For example, the search times for stacks of depth one improve only about 20 percent
when the abstract model of the control part is used. The effect abstraction on the search
depth is an exception to this rule.

The maximum sise of the state set BDDs encountered during the searches are shown in
figures 11 and 12. The state sets grow slightly faster than linearly with width (probably due
to the completion trees). They grow approximately quadratically with depth when we use
the abstract model of the control part of each cell.

8.3 Distributed Mutual Exclusion

As another example, we considered the verification of an asynchronous circuit for ensuring
mutually exclusive access to a shared resource. This circuit is also due to Martin [27, 23].
The circuit consists of a ring of c cells. Each cell communicates with a user of the resource
and with its left and right neighbors in the ring. Mutual exclusion is ensured by having a
single "token" that is passed around the ring. A cell must have the token before granting
access to its user. The distributed mutual exclusion circuit is an example of an asynchronous
circuit with complex control and no data path.

The variable ordering we used had the variables for each cell grouped together. The first
variables in the order were those for cell 1, and the last were those for cell c.

We studied how the complexity of reachability analysis varied with c for a variety of cell
models and search techniques:

1. Disjunctive partitioning using modified breadth first search. We combined the transi-
tion relations for the gates making up each individual cell, so the number of elements
in the partitioning was equal to the number of cells. The hierarchy used for local fixed

40

I0I6 400
! ,!

1ig.-4!- - S1f 1
-6 3

Figr 11: -t -BD. ft BD- ium for

FigutreaintsStetwee soet ofD ths ribes for Figue 12: Sanbotem seth BDD variabfor

stcso aioswdhwt J = •tak ofvrosdphs• iht

poreint .computastioel was pobtained byirepstfloedlbyptin the sobiet ru of -I cellsnhf.Th

2. Conjunctive partitioning wsith ithem 1,rst u-in c nasroell cobnefn the ls cell.a eprt

4. Conjunctive partitioning as in item 2, but using an abstract model of the cell.

In all cases, we used an initial state set of c states, each with the token in a different cell.
Interleaving semantics (methods 1 and 3) and non-interleaving semantics (methods 2 and 4)
both produced exactly the same set of reachable states for the distributed mutual exclusion
circuit.

A graph of the search times versus number of cells for the various methods is shown
in figure 13. Disjunctive partitioning with modified breadth first search and conjunctive
partitioning were again roughly comparable, with the former having a lower asymptotic
complexity. This contrasts with the stack example, where the combined conjunctive parti-
tioning was faster. This difference is probably because the complexity of the stack is in its
data path, while the complexity of the mutual exclusion circuit is due to control rather than
data. The verification times for the four methods grow as c to the power of 2.1, 3.1, 2.3
and 3.5, respectively. The largest unabstracted circuit that we examined had 16 Cells, 256
boolean state variables, and over 1016 reachable states. It took slightly less than 30 minutes
of CPU time on a SPARCstation 1+ to find the reachable states.

41

81 , ..dh .MI FS

AbL+uj .D

4096 ~ -

IOU,

512

ini '

162-
64 i./i

SI !

2 4 8 16 32

Figure 13: DME circuit verification times

42

e I

I

8 /
I I

,

4096

204-

1024/

5 1

64 Ab&.mj.
S-Dij.+MFS

u... +DiuJ+MBFS

2 4 16 32
C21

Figure 14: State set BDD sises for DME circuit

The total number of BDD nodes needed to represent the transition relation grew linearly
in c in all cases. The maximum state set BDD sizes are shown in figure 14. In the case of
the conjunctive methods, these BDDs grow approximately cubicly, while with disjunctive
partitioning and MBFS, the growth rate is reduced to linear.

9 Discussion

We have described a BDD-based algorithm for CTL model checking with fairness constraints.
The use of modified breadth firt search for reachability analysis has also been described,
as well as the advantages of viewing reachability analysis as a method for constructing and
checking invariants. All of these methods are made significantly more efficient by the use of
partitioned transition relations. We have empirically studied the asymptotic complexity of
verifying both synchronous and asynchronous circuits. In all cases, the verification time for

43

these circuits grew as a small polynomial in the number of circuit components.
Two of the distinguishin features of our verification methods are the use of transition

relations and the amount of guidance the user provides to the verifier. These features are
discussed in more detail below.

9.1 Transition Relations

Our verification methods use relations to describe how circuits can transition from one state
to another. We considered both monolithic transition relations (which are represented by a
single BDD) and partitioned transition relations (more than one BDD). For deterministic
systems, this information can be represented using transition function vectors instead. In
this method, a separate BDD is used for each Boolean state variable of the system. This
BDD represents the function computed by the combinational logic driving the associated
latch. Coudert et aL [18, 20] describe a number of algorithms for manipulating transition
functions.

Of these three methods of representing transitions (transition functions and monolithic
and partitioned transition relations), we believe a partitioned transition relation usually
gives the best performance. A monolithic transition relation can require many more BDD
nodes than a corresponding transition function vector [20] or partitioned'transition relation.
However, when a monolithic transition relation is not too large to store in semiconductor
memory, computations with the transition relation appear to be faster than those using
transition functions. This observation was also made by Coudert et aL [20] when they
compared transition relations to their techniques based on transition functions. In addition,
while we have demonstrated polynomial growth in verification time for several classes of
circuits using transition relations, no state exploration method based on transition functions
has shown such results. Our empirical results indicate that partitioned transition relations
give both the speed of transition relations and the memory efficiency of transition functions.

Touati et aL [34] independently proposed another method for representing transition
relations as implicit conjunctions. They use the constrain operator of Coudert et al. [18] to
eliminate the state set S(V) in equation 2. Then they compute the resulting conjunction
as a balanced binary tree, quantifying out each variable in V when all the BDDs depending
on that variable have been combined. We believe that this method is inferior to the one
proposed here because the constrain operator may introduce dependencies on any of the
variables in S(V). Generally, S(V) depends on all or nearly all of the variables in V. Thus,
after applying the constrain operator, all of the partitions of the transition relations may
depend on most of the variables in V. As a result, it may not be possible to quantify out
many variables before performing the final conjunction, greatly reducing the effectiveness
of early quantification. Touati et aL. also suggest having one transition relation per state
variable. As we have described, it is often better to combine parts of the transition relations.
This idea is also applicable to their method.

We implemented their method and tested it on some of the examples in section 7. For a
pipeline with four 8 bit registers and one pipe register, our method was more than five times
faster. In addition, for some of the relational product computations, the intermediate BDDs
using their method were more than an order of magnitude larger than the final result.

44

The two methods have been applied to the KEY benchmark and the MINMAX bench-
mark with a 32 bit wide data path. We computed the reachable states of these circuits
in 41 seconds (CPU time on a SPARCstation 1+) and less than 4 seconds (CPU time on
a Sun 3/60), respectively (see section 7.2). Touati et aL [341 reported run times (on a
DEC 5400) of 5706 seconds and 444 seconds, respectively. Their data includes the time
needed for parsing input files, computing the reachable states of the product automata of
two identical circuits, and checking equality of the outputs of the two automata. Although
these times are difficult to compare directly, a speed up of two orders of magnitude suggests
that our method performs better on these two benchmarks. Empirical results on additional
benchmarks are required, however, before a definitive conclusion can be reached.

9.2 Degree of Automation

State exploration based verification methods tend to be more automatic then methods based
on theorem provers. This is particularly true when attempting to verify a circuit that is not
correct. State exploration methods can easily produce a counter-example trace that helps
the user find errors in the circuit. With a theorem prover, the user only knows that the
attempted proof will not go through, without knowing whether this is because of a circuit
error or a weakness in the theorem prover.

Although symbolic state exploration methods are much more automatic than using a
theorem prover, it is still necessary for the user to do more than just provide a specification
and a circuit description. In this section, we consider some of the decisions that the user
must make.

First, the user must choose one of the many techniques in the literature, such as forward
and reverse reachability analysis, CTL model checking, etc. This is a difficult decision;
determining general rules about which methods perform well on what kinds of circuits is
still an open research question. There may be no alternative other than to try several
methods. It is useful to start with a small model of the circuit to be verified, either by
abstracting out much of the functionality of the circuit, or as we have done in this paper,
by parameterizing the data path width, number of registers, etc. If a particular method
performs better on a smaller version of the circuit, it is likely to perform better on the full
circuit, as well.

Example verification attempts on particular circuits, such as those in this paper, are
also helpful. We described three different methods: CTL model checking, and forward and
reverse reachability analysis. Only model checking worked well on the synchronous pipelined
ALU circuit that we considered. With forward reachability analysis the BDD needed to
represent the set of states reachable in one step was exponential in the size of the circuit.
However, when we checked for hazards in two asynchronous circuits, forward reachability
analysis was quite efficient. In this case, the set of states with hazards was represented by
an implicit disjunction of BDDs, one BDD for each component of the circuit. If we had
used reverse reachability analysis or CTL model checking, then we would have had to do a
separate analysis for each of the disjuncts. Also, the BDDs for reverse reachability analysis
of asynchronous circuits tend to be much larger than for forward analysis; the structure
inherent in the set of reachable states is lost.

With all BDD-baaed verification methods, a good variable ordering must be found. When

45

partitioned transition relations are used, the most important factor is the sie of the BDDs
representing the many state sets computed during verification. In our experiments, we often
found ways to improve a variable ordering by trying it on a small version of the circuit.
We plotted prejg. of the BDDs that were computed. A profile is a graph that shows,
for each variable, the number of BDD nodes labeled by that variable. Profiles can provide
information about how information flow in the circuit results in large BDDs, and how the
variable order might be modified to make the BDDs smaller. We found that a little time
pondering variable orders paid off with drastically reduced verification times.

The user must also provide a partitioning of the transition relations. This is not as
critical as the variable ordering; reasonable results can be obtained by simply having one
partition for each state variable of the circuit. However, we have shown that even better
results can be obtained by combining some of the partitions together. Finding a good way to
combine partitions was not a problem; usually our first guess worked quite well. We suspect
the process could be easily automated, given information about the hierarchical structure of
the circuit.

It appears more difficult to choose automatically the order in which partitions are used
when computing relational products. Nonetheless, in practice it was not difficult to choose
an ordering by hand. The orderings used in our experiments were based on the natural
flow of information in the circuits. Again, we found it helpful to test our choices on a small
version of the circuit being verified.

If modified breadth first search is used, then partitioning the transition relation is made
slightly more compli~ted by the inclusion of hierarchical information to guide the search.
Assume the user has already chosen a partitioning for standard breadth first search. Then,
given an explicit representation of the hierarchical structure of the circuit, it is straight-
forward to automate the process of finding a hierarchy to guide a modified breadth first
search.

Viewing reachability analysis as a way of helping the user construct an invariant provides
a way for the user to help the machine produce the invariant by changing the set of initial
states. For the asynchronous circuits we considered, it is easy to manually produce an
expression for all of the reachable quiescent states of the circuit. We suspect this is true in
general. The verifier performed quite well on our example circuits when the set of quiescent
states was used as a starting point for constructing the invariant.

In our experience, all of the decisions the user must make to use our verification meth-
ods are straightforward givwn an understanding of the circuit's operation and of the basic
properties of BDDs. Some of these decisions could be easily automated; other areas appear
better left to the user, at least given the current state of the art. Although providing these
hints to the verifier requires some extra effort on the part of the user, it is often justified by
the significant improvement in performance that can result.

What is the best balance between automation and manual effort in a BDD-based verifi-
cation method? The answer to this question depends on the situation in which the method
is to be used. If the goal is to produce a verification tool that can be used with a minimum
of training and without expert assistance, then full automation is of paramount importance.
The power of the methods described here could not be used fully in such a verification tool.
Other more automatic methods [1, 24, 34] might be more appropriate in this situation.

46

Although fully automatic vetification methods have become much more powerful in the
last several yams, there ae sl severe restrictions on the sise of the circuits to which they
can be applied. Our empirical results suggest that a small amount of manual assistance can
greatly improve the scalability of BDD-based verification techniques. Improving scalability
requires more than just a constant factor speed up; it requires a drastic reduction in the
rate that verification time increases as a function of increasing circuit sise (for example,
exponential growth reduced to quadratic growth). Such a reduction in growth rate can only
be demonstrated by asymptotic analysis, such as the kind of empirical analysis used in this
paper.

If further research confirms that manual assistance can improve scalability, then we see
two ways that development of manually assisted verification methods can have direct prac-
tical value. The first, quite naturally, is applying these methods to verification problems
that are beyond the state of the art for fully automatic verification tools. Manual assistance
would still be potentially costly, in terms of time and necessary expertise, but formal verifi-
cation would not be possible otherwise in this situation. The second use would be to shed
light on potential improvements to existing fully automatic techniques. We view the current
paper as an example of this. We have described the kind of manual assistance required in
our methods; if these parts of the verification process could be efficiently automated, the
result would be a more powerful fully automatic verification technique.

References

[11 C. Berthet, 0. Coudert, and J. C. Madre. New ideas on symbolic manipulations of
finite state machines. In IEEE International Conference on Computer Design, 1990.

[2] S. Bose and A. Fisher. Verifying pipelined hardware using symbolic logic simulation.
In IEEE International Conference on Computer Design, October 1989.

[3] S. Bose and A. L. Fisher. Automatic verification of synchronous circuits using symbolic
logic simulation and temporal logic. In L. Claesen, editor, Proceedings of the IMEC-
IFIP International Workshop on Applied Formal Methods For Correct VLSI Design,
pages 759-764, November 1989.

[4] K. S. Brace, R. L. Rudell, and R. E. Bryant. Efficient implementatibn of a BDD package.
In 27th ACM/IEEE Design Automation Conference, pages 40-45, 1990.

[51 M. C. Browne. An improved algorithm for automatic verification of finite state ma-
chines using temporal logic. In Proceedings of the First Annual Symposium on Logic in
Computer Science, Boston, Mass., June 1986.

[6] M. C. Browne, E. M. Clarke, D. L. Dill, and B. Mishra. Automatic verification of sequen-
tial circuits using temporal logic. IEEE llunaactions on Computers, C-35(12):1035-
1044, 1986.

[7] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Truns-
actions on Computers, C-35(8), 1986.

47

[8 R.LE. Bryant, D. L. Beatty, and C.-J. H. Seger. Formal hardware verification by symbolic
ternary trajectory evaluatias. In SMt ACM/IEEE Den", Automationý Coiiafwwe,
1991.

[91 R. E. Bryant and C.-J. Sager. Formal verification of digital circuits using symbolic
tnmay system models. In R. Kurshan &ad E. M. Clarke, editors, Computer-Aided
Ver•ation, Pmceedings of the 1990 Workshop, volume 3 of DIMACS Series in Discrete
M- eeat and Theoretical Computer Sciene. American Mathematical Society, 1990.
Also in Springe-Verlag LNCS 531.

[10] J. IL Burch, E. M. Clarke, and D. E. Long. Representing circuits more efficiently in
symbolic model checking. In 28th ACM/IEEE Design Automation Conference, 1991.

[11] J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model =hecking with partitioned
transition relations. In A. Halaas and P. B. Denyer, editors, Proceedings of the In-
ternational Confemre on Verl Lare S•ak Integration, Edinburgh, Scotland, August
1991.

[121 J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential circuit verification
gsymbolic model checking. In VUt ACM/IEEB Design Automation Conferece,

1990.

[13] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic model
checking: 1O0 states and beyond. In Proceedings of the Fifth Annual IEEE Szjnposium
on Logic in Computer Science, June 1990.

[141 J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 10" states and beyond. Information and Computation, 98(2):142-170,
June 1992.

[15] H. Cho, G. Hachtel, S.-W. Jeong, B. Plessier, E. Schwars, and F. Someni. ATPG
aspects of FSM verification. In IEEE International Conference on Computer-Aided
Design, pages 134-137, 1990.

[16] E. M. Clarke and E. A. Emerson. Synthesis of synchronisation skeletons for branching
time temporal logic. In D. Kosen, editor, Logic of Progranm: Workshop, volume 131
of Lecture Note. in Computer Science, Yorktown Heights, New York, 1981. Springer-
Verlag.

[17] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM ransaction, on Program-
ming Languages and Systen., 8(2):244-263, 1986.

[18] 0. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous sequential ma-
chines based on symbolic execution. In Automatic Verification Methods for Finite State
SYste•s, International Workshop, Grenoble, hmnce, volume 407 of Lecture Notes in
Computer Sciene. Springer-Verlag, June 1989.

48

[19] 0. Coudert and J. C. Madre. A unified framework for the formal verification of circuits.
In EEN International Conference on Computer-Aided Design, pages 126-129, 1990.

[20] 0. Condert, J. C. Madre, and C. Berthet. Verifying temporal properties of sequential
machines without building their state diagrams. In R_ Kurshan and E. M. Clarke,
editors, Computer-Aided Verifleniom, U12xý% dimg of the 1990 Worishop, volume 3 of
DIMACS Series m Discrete Mathematics and Theoretical Computer Science. American
Mathematical Society, 1990. Also in Springer-Verlag LNCS 531.

[21] D. L. Dill. Trace theory for automatic hierarchical verification of speed-independent
circuits. In J. Allen and F. T. Leighton, editors, Advanced Research in VLSI: Proceedings
of the Fifth MIT Conference. MIT Press, 1988.

[22] D. L. Dill. fluce Theory for Automatic Hierarchical Verification of Speed-Independent
Circuits. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 1988. Also appeared
a [23].

[23] D. L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent
Circuits. ACM Distinguished Dissertations. MIT Press, 1989.

[24] T. Filkorn. A method for symbolic verification of synchronous circuits. In Proceedings
of the Tenth International Symposium on Computer Hardware Description Languages
and their Applications, 1991.

[25] Rt. P. Kurshan. Testing containment of w-regular languages. Technical Report 1121-
861010-33-TM, Bell Laboratories, 1986.

[26] B. Lin, H. J. Tousti, and A. R. Newton. Don't care minizmiation of multi-level se-
quential logic networks. In IEEE International Conference on Computer-Aided Design,
pages 414-417, 1990.

[27] A. J. Martin. The design of a self-timed circuit for distributed mutual exclusion. in
Chapel Hill Conference on VLSI, 1985.

[28] A. J. Martin. A synthesis method for self-timed VLSI circuits. In IEEE International
Conference on Computer Design, October 1987.

[29] K. L. McMillan. Symbolic Model Checking: An Approach to the State Ezplosion Problem.
PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 1992.

[30] K. L. McMillan. Symbolic Model Checking. Kiuwer Academic Publishers, 1993. To
appear.

[31] K. L. McMillan and J. Schwalbe. Formal verification of the Encore Gigamax cache
consistency protocol. In International Symposium on Shared Memory Multiprocessors,
1991.

49

[321 C. Pixley. A computational theory and implementation of sequential hardware equiva-
lence. In R. Kurshan and E. M. Clarke, editors, Computer-Aded Verfication, Proceed-
ing of the 1990 Workhop, volume 3 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science. American Mathematical Society, 1990. Also in Springer-
Verlag LNCS 531.

[331 J. A. Rees, N. I. Adams, and J. R. Meehan. T7e T ManuaL Yale University, 4th edition,
1984.

(341 H. J. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Saagiovamni-Vincentelli. Im-
plicit state enumeration of finite state machines using BDD's. In IEEE International
Conference on Computer-Aided Design, pages 130-133, 1990.

50

